淘宝推荐系统:从千人一面到千人千面逻辑和算法(上篇)

应广大朋友的要求,本人对本篇文章进行一次更新,将推荐系统的底层逻辑和部分算法模型进行整合归纳,由于内容篇幅较长,分为上下两篇,请分别浏览!

互联网技术的高速发展,给我们带来了十足的便利性,回顾整个互联网的发展历程,从PC时代转移到移动互联网时代,从移动互联网时代转向IOT时代,从IOT时代又即将迈入AI时代,这些飞速发展的背后,其实是数据的采集,传输和处理的大变革。

而以我们当下为例,移动互联网技术和智能手机的发展,让采集用户数据的能力变得空前强大,无时无刻,无所不在,而一旦拥有这些数据之后全行业的个性化推荐技术变得更加容易实现,不论是今日头条的,还是淘宝美团的,无疑是这个时代的最大受益者。

不同于个人PC机,手机可以唯一锚定一个具体的自然人,而手机这类私人的专属物品是与其他人很难共用的,那么你手机的型号,在手机上的浏览、交易等行为数据,就具有了极高的分析价值。

从电商平台的角度来讲,个性化推荐技术的本质是将当前最有可能成交的产品优先推荐给消费者,使流量得到更加充分的利用,最大限度的提高转化效率。而推荐技术也随着用户个人数据的不断丰富,在逐渐升级,从最基础的千人一面,慢慢演化到千人千面,下面我就沿着这个演化史给大家具体介绍一下相关的推荐逻辑和模型算法。

NO1.千人一面的逻辑基础和推荐算法核心逻辑:物以类聚,也即推荐和当前商品相似、相关或其他维度的产品,每个人进来看到的商品推荐其实是完全一致的,俗称千人一面;使用环境:当前基本没有什么用户数据,但是商品数据丰富到足够支持起所需的推荐逻辑。1. 根据商品的分类或其他基础属性进行推荐(相似性推荐)

对于某一个商品来说,这是一种替代性的推荐方式,也即用户不想买它的时候,还可以有其他的选择。就比如说用户正在浏览一个斯伯丁的篮球,看完描述之后发现不是自己理想的款式,规格材质不太对,但是在这个单品下方,出现了一个同类型的耐磨材质的篮球,OK!那么这个用户可能就会把这个推荐的篮球带回家。

这个例子中仅仅是依据商品的分类进行推荐,当然我们还可以根据实际情况加入商品的


比丘资源网 » 淘宝推荐系统:从千人一面到千人千面逻辑和算法(上篇)

发表回复

提供最优质的资源集合

立即查看 了解详情